
elifesciences.org

RESEARCH ARTICLE

Layer 2/3 pyramidal cells in the medial
prefrontal cortex moderate stress induced
depressive behaviors
Prerana Shrestha, Awni Mousa, Nathaniel Heintz*

Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller
University, New York, United States

Abstract Major depressive disorder (MDD) is a prevalent illness that can be precipitated by acute or

chronic stress. Studies of patients with Wolfram syndrome and carriers have identified Wfs1 mutations

as causative for MDD. The medial prefrontal cortex (mPFC) is known to be involved in depression and

behavioral resilience, although the cell types and circuits in the mPFC that moderate depressive

behaviors in response to stress have not been determined. Here, we report that deletion of Wfs1 from

layer 2/3 pyramidal cells impairs the ability of the mPFC to suppress stress-induced depressive

behaviors, and results in hyperactivation of the hypothalamic–pituitary–adrenal axis and altered

accumulation of important growth and neurotrophic factors. Our data identify superficial layer 2/3

pyramidal cells as critical for moderation of stress in the context of depressive behaviors and suggest

that dysfunction in these cells may contribute to the clinical relationship between stress and depression.

DOI: 10.7554/eLife.08752.001

Introduction
Major depressive disorder (MDD) is a prevalent and potentially life-threatening disorder that affects

approximately 16% of the global population at some point in life (Mayberg, 2009; Nestler and

Hyman, 2010; Flint and Kendler, 2014). Core symptoms of MDD include lack of motivation, reduced

ability to derive pleasure from natural rewards (anhedonia) and abnormalities of sleep and appetite.

MDD is thought to occur as a result of combined genetic, environmental, and biological factors.

Although the nature of these factors and their relative contributions to the disorder remain largely

unknown, human studies (Mayberg, 2009; Hasler and Northoff, 2011; Morishita et al., 2014) and

circuit-based molecular genetic analysis in mice (Nestler and Hyman, 2010; Li et al., 2012; Tye and

Deisseroth, 2012; Svenningson et al., 2006) have shown that MDD is characterized by alterations in

the activity of a distributed circuit controlling emotive behaviors and that treatments that act within

the medial prefrontal cortex (mPFC) can have a strong therapeutic effect (Leuchter et al., 2012;

Schmidt et al., 2012). While these studies have demonstrated the complexity of the neural circuits

controlling depressive behaviors and the actions of antidepressants, the impact of environmental

factors on these circuits and their role in behavior has not been addressed adequately.

It is widely recognized that environmental stress, including early childhood trauma and recent

stressful experiences, can contribute to MDD (Russo et al., 2012; McEwen and Morrison, 2013).

Depressive behaviors can be elicited in experimental animals using a variety of stressors, which

typically induce alterations in neuronal morphology and synaptic function (Shansky and Morrison,

2009; Moench and Wellman, 2014) in the mPFC that are consonant with the thinning of the mPFC

that occurs in MDD (Kroes et al., 2011; Grieve et al., 2013). Inactivation of the ventral mPFC results

in loss of cortical control of stress (Diorio et al., 1993; Figueiredo et al., 2003) and alters the

activation of brainstem neurons that regulate behavioral responses to stress (Maier, 2015).

Optogenetic activation of mPFC neurons projecting to the dorsal raphe nucleus can reversibly alter
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mobility in the forced swim test (FST), implicating this specific class of pyramidal cells in the behavioral

responses to stressful situations (Warden et al., 2012). While these studies clearly establish the mPFC

as a structure that is important in the generation and execution of depressive behaviors and stress

responses, and in the therapeutic actions of deep brain stimulation and antidepressants such as

selective serotonin reuptake inhibitors, they also highlight the anatomical and functional complexities

of mPFC circuitry.

To investigate cortical cell types that may play additional roles in MDD, it would be informative to

identify cell types in the prefrontal cortex that express specifically genes known to cause major

depression and to assess their potential roles in the regulation of depressive behaviors. Although

genome-wide association studies (GWAS) have demonstrated that common depression is likely to

result from alterations in a very large number of genes of small effect (Flint and Kendler, 2014),

studies of Wolfram syndrome have identified Wfs1 as a clear example of a gene that can cause MDD

in humans (Swift et al., 1990; Crawford et al., 2002; Swift and Swift, 2005). Here, we have

employed bacTRAP translational profiling and virus mediated trans-synaptic tracing studies (Wall

et al., 2010) to demonstrate that the Wolfram syndrome gene (Wfs1) is expressed in a specific

population of neurotrophin 3 (Ntf3) and proenkephalin (Penk1) expressing pyramidal cells in

superficial layer 2/3 of the mPFC. These cells receive projections from other cortical structures, from

the posterior thalamic nuclear group, and from the lateral amygdala. Deletion of Wfs1 in forebrain

neurons of conditional knockout mice (Wfs1/CKO) alters stress-induced depression-related behaviors,

induces the expression of the immediate early gene Fos in the paraventricular nucleus (PVN) of the

hypothalamus and results in enhanced accumulation of serum corticosterone. Increased stress-

induced depressive behavior is also evident in animals from which Wfs1 was deleted specifically in the

mPFC. Wfs1 is present in the endoplasmic reticulum (ER) of superficial cortical pyramidal cells, and its

loss in these neurons results in altered growth factor and neurotrophin processing in response to

inescapable restraint stress. Taken together, our data demonstrate that superficial layer 2/3 pyramidal

cells in the mPFC can play a critical role in stress-induced depressive behaviors and indicate that

dysfunction of Wfs1 in forebrain neurons leads to activation of the hypothalamic–pituitary–adrenal

eLife digest Around 16% of people will experience an episode of major depression at some

point in their lives, with symptoms including a loss of motivation, a reduced enjoyment of previously

pleasurable activities, and disturbances in sleep and appetite. Multiple genes and environmental

factors have been implicated in depression, and one of the strongest risk factors for developing the

disorder is exposure to stress.

Stress and depression affect many of the same brain regions, most notably the prefrontal

cortex—an area that is involved in decision making, problem solving and regulating emotions.

Shrestha et al. therefore reasoned that a good way of obtaining insights into the relationship

between stress and depression would be to study prefrontal cortex cells that express genes that

have been linked to depression.

One such gene is Wfs1. Mutations in this gene cause a rare disorder called Wolfram syndrome, in

which affected individuals experience a wide range of symptoms that often include severe

depression. Shrestha et al. identified a specific population of cells in the prefrontal cortex that

express Wfs1. When subjected to a stressful event, such as being restrained, mice that had been

genetically modified to lack this gene in their prefrontal cortex were more likely to exhibit

depression-like behaviors than non-modified mice. The genetically modified mice also released more

stress hormones when restrained and produced different amounts of a number of proteins that

regulate the growth and signaling of neurons.

Shrestha et al. propose that these proteins act on neural circuits that control how the mice

respond to stress. Furthermore, changes in the levels or the distribution of these proteins may

increase the likelihood that a stressful event will trigger behaviors associated with depression.

Further experiments are required to investigate the possibility that using drugs to manipulate cells

that express Wfs1 could protect against the harmful effects of stress, or even treat existing episodes

of depression.

DOI: 10.7554/eLife.08752.002
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(HPA) axis and elevated blood corticosterone levels. They highlight a role for superficial layer 2/3

pyramidal cells of the mPFC in the modulation of depressive behaviors and suggest that the major

depression evident in patients with Wolfram syndrome and carriers may occur in part due to

hyperactivation of the HPA axis in response to stress.

Results
Wolfram syndrome is a complex, multisystem disorder that results in early onset diabetes, optic

atrophy, and increased risk for MDD (Rigoli et al., 2011). Wfs1 knockout mice accurately model many

aspects of Wolfram syndrome, including type 1 diabetes, retinal degeneration, and impaired

behavioral responses to stress (Luuk et al., 2008; Kato et al., 2008). Given the dendritic and synaptic

remodeling that occurs in layer 2/3 pyramidal cells in the mPFC in response to stress, and the role of

the prefrontal cortex in the regulation of stress responsiveness, we were interested in comparative

studies of Wfs1 in frontal cortex pyramidal cell populations, and the impact of Wfs1 deletion in these

cell types.

A bacTRAP transgenic line expressing in the supragranular layer of the
prefrontal cortex
To target layer 2/3 pyramidal cells specifically in the mouse prefrontal cortex (Figure 1A), we took

advantage of ISH data demonstrating that the gene for neurotrophin 3 (Ntf3) is expressed primarily in

superficial layers of this region of cortex (Figure 1B) (www.bgem.com). bacTRAP transgenic lines

expressing the EGFP/L10a fusion protein for use in translational profiling (Doyle et al., 2008; Heiman

et al., 2008) were generated, and expression of the transgene assayed relative to the expression pattern

of endogenous Ntf3 as revealed by in situ hybridization. The Ntf3 bacTRAP founder line PS1046 was

chosen for profiling studies because its expression in the mPFC (Figure 1B–E) and dentate gyrus

(Figure 1—figure supplement 1) reproduced expression of the endogenous gene (Figure 1B). EGFP/

L10a expression was primarily restricted to superficial layer 2/3 in the mPFC, including the prelimbic,

infralimbic and medial orbitofrontal regions. Expression of EGFP/L10a was observed only in the NeuN +
neurons (data not shown). Furthermore, at high magnification, it was evident that the soma of EGFP/

L10a-expressing cells was pyramidal, with a clear apical dendrite (Figure 1E). EGFP/L10a expression was

localized to the soma, proximal dendrites, and nucleolus, as described for other bacTRAP mouse lines

(Doyle et al., 2008). These results confirm previous studies demonstrating laminar expression of Ntf3

gene in the cortex (Vigers et al., 2000) and identify these cells as supragranular layer 2/3 pyramidal cells.

Translational profiling of Ntf3 cortical cells
To determine whether Wfs1 is expressed in the supragranular pyramidal neurons targeted in the Ntf3

PS1046 bacTRAP line and to gain insight into specifically expressed genes that might be altered inWfs1-

mutant cortical pyramidal cells, we employed TRAP translational profiling (Heiman et al., 2008) to

compare these cells to other cortical cell types (Doyle et al., 2008). We chose for this analysis three

previously characterized pyramidal cell types: GLT25D2 (layer 5 corticopontine projecting neurons

expressing Glt25d2), S100A10 (layer 5 corticostriatal pyramidal cells expressing S100a10), NTSR1 (layer

6 corticothalamic pyramidal cells expressing Ntsr1); two broadly defined interneuron classes including

DLX1 (non-fast spiking cortical inter-neurons targeted by Dlx1), and NEK7 (fast spiking cortical inter-

neurons expressing Nek7); and two glial cell types, ALDH1L1 (astrocytes expressing Aldh1l1) and OLIG2

(oligodendrocytes characterized by expression of Olig 2) (Figure 1F). As expected from the anatomical

characterization of the Ntf3-targeted cells, comparative analysis of TRAP data collected from these cell

types (Shrestha et al., 2015; Doyle et al., 2008; Schmidt et al., 2012; Nakajima et al., 2014) indicates

clearly that Ntf3 layer 2/3 pyramidal cells express genes in their ground state that can be used to

distinguish them from other cortical cell types (Figure 1G).

Examination of mRNAs enriched in Ntf3 pyramidal cells (Figure 1G,H; Figure 1—source data 1, 2)

relative to those expressed in the entire cerebral cortex reveals a variety of control genes previously

shown to be expressed in layer 2/3 pyramidal cells, including Cux2, Penk, Smoc2, Matn2, Wfs1, Htr5b,

Nptx2, Hap1, Gsg1l, Ntf3 (www.brain-map.org). Laminar markers that have been reported to be

expressed specifically in cortical layers 4 (e.g., Hsd11b1), 5 (e.g., Etv1), and 6 (e.g., Drd1a, Ctgf) were

not enriched (data not shown). Of 9 annotated marker genes (Aqp4, Gfap, Aldh1L1, Slc1a3, Olig2,

Gad1, Dlx1, Nek7 and Gad2) for non-pyramidal cells (glial cells and inter-neurons), all were depleted in
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Figure 1. Identification and translational profile of a novel layer 2/3 pyramidal cell type in the cerebral cortex. (A) Ntf3 BAC RP23-79E22 was modified with

an EGFP/L10 cassette using BAC homologous recombination methodology as previously described (Gong et al., 2003). EGFP/L10 expression in Ntf3::

bacTRAP line PS1046 recapitulates the pattern of endogeneous Ntf3 gene expression (B) (BGEM, ISH) in layer 2 of the medial prefrontal cortex (C, D). The

EGFP/L10-positive cells in mPFC have pyramidal cellular morphology with an apical dendrite (E). Translational profiles of eight distinct cell types (F) in the

cerebral cortex including distinct pyramidal cell types (NTF3, GLT25D2, S100A10, NTSR1), interneuron cell types (DLX1, NEK7), and glial cell types

(ALDH1L1, OLIG2) were compared and shown in a heat map of cell-specific genes at 0.01 specificity index statistic threshold (G). Average normalized

expression values of cell-specific enriched genes were z-transformed and plotted. Dark red = highly enriched. (H) Scatter plot of mean log normalized

Figure 1. continued on next page
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the Ntf3 cells (Figure 1H). This is consistent with the anatomical studies of the Ntf3 line indicating that

the targeted layer 2/3 cells are pyramidal. Housekeeping genes (Rps6, Eif4e, Dnm2 and Ttf1) were all

expressed within twofold enrichment boundary (Figure 1H). Furthermore, in situ hybridization data for

Ntf3-enriched candidates from the microarray data reveal laminar expression (Figure 1I; http://mouse.

brain-map.org/), and quantitative RT-PCR (qRT-PCR) of TRAP RNA provided additional confirmation

that Ntf3 (2̂-ddCT = 12.09 ± 1.37), Wfs1 (2̂-ddCT = 3.07 ± 0.86), and Penk (2̂-ddCT = 2.69 ± 0.31)

mRNAs are enriched in the Ntf3 cells (Figure 1J).

Wolframin is present in the ER of layer 2/3 pyramidal cells
The demonstration that expression of Wfs1 occurs in superficial layer 2/3 pyramidal cells in the

prefrontal cortex of mice is interesting with regard to relationship between stress and depression.

Recent studies have demonstrated convincingly that stress can induce dendritic remodeling of the

prefrontal cortex (Radley et al., 2004) and that behavioral state–dependent synaptic modifications

are important factors in the susceptibility and resilience to stress (Wang et al., 2014). Although the

precise cell populations experiencing these changes in PFC have not been determined, the expression

of Wfs1 in layer 2/3 pyramidal cells and the clinical features of Wolfram Syndrome suggested to us

that these cells may be of particular importance to the relationship between stress and depression. As

a first step toward investigation of this possibility, we determined the subcellular distribution of

Wolframin (WFS1), the protein encoded by the Wfs1 gene, in the PFC. Thus, a specific antiserum to

WFS1 was prepared and used to characterize its distribution in the PFC. As expected, WFS1 is

expressed specifically in several structures in the adult mouse brain that are relevant to stress and

depression, including superficial layers of the cerebral cortex, the central extended area of the

amygdala (data not shown), and pyramidal cells in the CA1 field of the hippocampus (Figure 2A–C).

Although WFS1 is clearly co-expressed with Ntf3 in layer 2/3 pyramidal cells of the PFC (Figure 2A),

its expression is entirely distinct from Ntf3 expression in the hippocampus (Figure 2C).

WFS1 is an ER membrane protein (Takeda et al., 2001) that is thought to be important in Ca2+

homeostasis (Yurimoto et al., 2009), insulin secretion (Ishihara et al., 2004), and the unfolded

protein response (Fonseca et al., 2005). To determine whether the ER localization of WFS1 is

maintained in the cerebral cortex, DAB-based pre-embedding immunoelectron microscopy was

employed. Consistent with ultrastructural studies of peripheral and cultured cell types, dense staining

of the ER was observed in all cortical cells that were positive for WFS1, principally in the cell soma and

primary dendrites (Figure 2D).

Selective deletion of Wfs1 in cortical excitatory neurons
Wolfram syndrome is a complex, multisystem disorder whose features must reflect aberrant cell

function in a number of tissues, including the pancreas and central nervous system (CNS). Given the

prominent expression of Wfs1 in the cortex, and the extensive literature documenting a role for the

PFC in depression and resilience to stress, we were particularly interested in phenotypes that occur

Figure 1. Continued

values of NTF3 Cortex IP vs cortex input. Red and blue closed squares represent differentially expressed genes at 0.05 FDR corrected p-values and

twofold change in expression. Yellow triangles represent negative control genes that are markers for non-neuronal cell types. Black triangles represent

housekeeping genes whose expression is expected to be constant between the NTF3 cortex IP and cortex input. (I) Several layer 2/3 genes were enriched

in NTF3 cortex IP such as Wfs1, Penk1, Matn2, Smoc2, Stard8, Cux2, Gsg1l, and Syt17 (www.brain-map.org). (J) Quantitative RT-PCR independently

confirm that Ntf3 (2̂-ddCT = 12.09 ± 1.37), Wfs1 (2̂-ddCT = 3.07 ± 0.86), and Penk1 (2̂-ddCT = 2.69 ± 0.31) are enriched in the Ntf3 cortex IP.

DOI: 10.7554/eLife.08752.003

The following source data and figure supplement are available for figure 1:

Source data 1. Top genes with the highest fold change difference in average expression between the NTF3 cortex IP and cortex input.

DOI: 10.7554/eLife.08752.004

Source data 2. Genes highly ranked in NTF3 cell type by specificity index analysis across 8 cell types—GLT25D2 (corticopontine Layer 5 pyramidal cell

type), S100A10 (corticostriatal Layer 5 pyramidal cell type), NTSR1 (corticothalamic Layer 6 pyramidal cell type), DLX (fast spiking inter-neurons), NEK7

(non-fast spiking inter-neurons), ALDH1L1 (astrocytes), and OLIG2 (oligodendrocytes).

DOI: 10.7554/eLife.08752.005

Figure supplement 1. CNS expression pattern of EGFP.L10 in Ntf3 bacTRAP line PS1046.

DOI: 10.7554/eLife.08752.006
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specifically as a consequence of Wfs1 mutation in the cortex. Accordingly, we generated a Wfs1-

mutant mouse line carrying a conditional allele (Wfs1 F/F) by targeting loxP sites surrounding the

eighth and largest exon of the gene (Figure 3A). This exon was chosen because it encodes the C-

terminal hydrophilic domain, the site of many nonsense, and missense mutations that cause Wolfram

Syndrome (Rigoli et al., 2011).

To remove WFS1 from the cerebral cortex, we employed the Emx1.IRES.cre driver line that

expresses the Cre recombinase specifically in the telencephalon (Figure 3B) (Gorski et al., 2002).

Important subcortical sites of Wfs1 expression, including the amygdala, striatum, and hypothalamus

(Luuk et al., 2008), are unaffected in Emx1.IRES.cre driver line (Figure 3B; data not shown).

Figure 2. WFS1 is selectively enriched in NTF3 pyramidal cell population in the medial PFC. Using custom

synthesized antiserum for WFS1, it is evident that the medial PFC EGFP/L10 neuronal population of Ntf3::bacTRAP

transgenic mice co-immunostains for WFS1 (A). WFS1 is present in layer 2/3 of the cerebral cortex including medial

PFC, and at higher magnification, it is evident that WFS1 is distributed in the cell soma as well as primary dendrites

of layer 2 pyramidal cells (B). The co-expression of WFS1 and Ntf3::EGFP is region specific. In the hippocampus,

WFS1 is expressed in CA1, whereas Ntf3::EGFP is expressed in the dentate gyrus (C). Immunoelectron micrography

with WFS1 antiserum further shows that WFS1 is associated with rough endoplasmic reticulum in layer 2/3 pyramidal

cells in the medial PFC neurons that express WFS1 (D).

DOI: 10.7554/eLife.08752.007
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Furthermore, although previous studies indicate that Emx1 is expressed in all forebrain excitatory

neurons and glia, the fact that Wfs1 expression is restricted to layer 2/3 cortical pyramidal cells and

CA1 hippocampal neurons in forebrain structures indicates that any phenotypes evident in Wfs1

telencephalon-specific conditional knockout mice (Wfs1/CKO) generated by conditional deletion of

Wolframin using the Emx1.IRES.cre driver line must result from loss of function in these excitatory

neuron populations. Wfs1/CKO mice were born in normal Mendelian ratio and had normal ad libitum

Figure 3. Selective deletion of Wfs1 in cortical excitatory neurons precipitates stress-induced depression-related behaviors. (A) Wfs1-mutant mice were

generated by incorporating the conditional Wfs1-targeting vector that has the largest exon, exon 8, flanked by loxP sites. Wfs1 conditional KO (Wfs1/

CKO) mice were produced by breeding Wfs1-mutant mouse bearing the Wfs1 conditional allele with Emx1.IRES.cre knock in mouse. (B) Normal pattern of

WFS1 expression in the cerebral cortex (PFC, Ctx) and subcortical structures including striatum (Str), central amygdala (CeA), and hippocampus (CA1) is

evident in wt (Wfs1 F/F) mice (top panel) whereas the cortical expression (cerebral cortex and hippocampus) of WFS1 is lost in Emx1.IRES.Cre Wfs1 F/F

(Wfs1/CKO) mice. Wfs1 expression in CeA of Wfs1/CKO mouse brain is intact (bottom panel). (C) Wfs1/CKO mice exhibit equivalent episodes of

immobility as WT mice in Porsolt’s Forced Swim Test (FST) under baseline conditions but following acute restraint stress (ARS), they exhibit behavioral

despair as indicated by increased episodes of immobility. FST: Two-way ANOVA—Bonferroni post hoc test: CKO Basal vs CKO + ARS, p < 0.05*, n = 8 per

group. (D) Wfs1/CKO mice become anhedonic following ARS and lose normal preference for sucrose, but their total fluid intake is unchanged compared

with WT regardless of exposure to stress (E). Sucrose preference test: Two-way ANOVA—Bonferroni post hoc test: CKO Basal vs CKO + ARS, p < 0.001**,

n = 10 per group. Wfs1/CKO mice exhibit normal levels of spontaneous locomotion and acclimation to a novel arena in the open field test under baseline

conditions and following ARS (F). Wfs1/CKO mice do not exhibit anxiety-related behavior following ARS as assayed by thigmotaxis in the open field arena

(G). Likewise, the percentage time spent in open arms of the elevated plus maze is comparable for both genotypes (H). Wfs1/CKO mice display normal

instrumental learning and reversal in three-choice operant chamber (I), and they display normal spatial learning and memory in Morris water maze in

measures of swim distance, latency to reach platform, and % time spent in the probe quadrant NE post training (J).

DOI: 10.7554/eLife.08752.008

Shrestha et al. eLife 2015;4:e08752. DOI: 10.7554/eLife.08752 7 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.08752.008
http://dx.doi.org/10.7554/eLife.08752


body weight compared with their wild-type (wt) littermates. Glucose levels were normal in these mice

as assessed by urinalysis in non-fasting conditions (data not shown), indicating that the pancreatic β
cells responsible for metabolic phenotype of Wolfram syndrome were spared in the Wfs1/CKO mice.

These results are consistent with previous studies showing that Emx1 is exclusively expressed in the

CNS (Gorski et al., 2002).

Wfs1/CKO mice display stress-induced depression-related behaviors
To assess the regional specificity of Wolframin loss in the Wfs1/CKO mice, the WFS1-specific

antiserum was used for immunofluorescence localization studies. A normal pattern of WFS1

expression was evident in the Wfs1 F/F line, including expression in the cerebral cortex, the

hippocampus, the amygdala (Figure 3B, top panel), and other selected subcortical structures

(not shown). As expected, Wfs1/CKO mice carrying both the floxed allele and the Emx1.IRES.cre

driver exhibited wt expression of WFS1 in all subcortical structures, but lost all detectable WFS1

expression in the cerebral cortex and hippocampus (Figure 3B, bottom panel).

The specific loss of Wfs1 in the forebrain of Wfs1/CKO mice presented an important opportunity to

determine whether the enhanced sensitivity to stress and depression of patients with Wolfram syndrome

(Koido et al., 2005; Swift and Swift, 2005), or the behavioral abnormalities of Wfs1 KO mice (Kato

et al., 2008; Luuk et al., 2009), might result from abnormal function of forebrain neurons. Accordingly,

Wfs1/CKO mice were put through a battery of behavioral tests to measure spontaneous activity,

cognitive function, and depressive behaviors under normal baseline conditions, and in animals that had

first been exposed to acute restraint stress (ARS). Acute psychological stressors such as swim stress and

ARS strongly alter rodent behavior in the FST and in the sucrose preference test (SPT) (Duncan et al.,

1993; Cullinan et al., 1995; Jankord and Herman, 2008). These tests are designed to measure two

hallmarks of depression, behavioral despair, and anhedonia, and the effect of ARS on these behaviors in

rodents has been used to model the effects of acute stress on depression (Kohda et al., 2007).

As shown in Figure 3, deletion of Wfs1 from forebrain neurons in Wfs1/CKO mice revealed no

differences in behavior under normal baseline conditions. Measurements of depressive behaviors

(Figure 3C,D), fluid intake (Figure 3E), locomotion (Figure 3F), anxiety (Figure 3G,H), and cognitive

function (Figure 3I,J) were all within the normal range for wt mice. However, the very specific effect of

ARS on depressive behaviors was strongly altered in the Wfs1/CKO mice. Thus, Wfs1/CKO mice

displayed a significant increase in immobility in the FST (Figure 3C; Two-way analysis of variance

[ANOVA]—Bonferroni post hoc test: CKO Basal vs CKO + ARS, p < 0.05*, n = 8 per group) and

a strong decrease in sucrose preference after exposure to ARS stress (Figure 3D; Two-way

ANOVA—Bonferroni post hoc test: CKO Basal vs CKO + ARS, p < 0.001**, n = 10 per group). It is

interesting that these stress dependent behaviors were observed despite the normal behavior of

Wfs1/CKO mice in these tests in the absence of stress, and despite the fact that no effect of the loss of

Wfs1 in the cortex and hippocampus could be detected in the instrumental (Figure 3I) or spatial

learning assays (Figure 3J). Our results indicate, therefore, that loss ofWfs1 in forebrain neurons does

not disrupt baseline learning or cognitive flexibility but renders the animals vulnerable to stress-

induced depression-related behaviors.

Deletion of Wfs1 in the mPFC is sufficient to cause stress-induced
depression-related behavior
Although the behavior of Wfs1/CKO mice clearly demonstrates that the loss of WFS1 in layer 2/3

cortical pyramidal cells and hippocampal CA1 neurons can result in enhanced responses to stress,

previous studies have shown that the mPFC is both altered in response to stress (Radley et al., 2004)

and important for behavioral resilience in response to stress under a variety of conditions (Warden

et al., 2012; Maier, 2015). Accordingly, we were next interested in assessing whether the effects of

stress on depressive behaviors in Wfs1/CKO mice mapped to the mPFC. To determine whether these

behaviors are altered specifically because of abnormalities in the mPFC, we employed the viral

Cre–loxP approach to knockout Wfs1 expression conditionally in a spatially and temporally controlled

manner. Specifically, we injected an AAV2 expressing Cre recombinase tagged at the N-terminus with

EYFP (AAV2.CMV.HI.GFP-Cre.SV40) into the mPFC of homozygous mutant mice (Wfs1 F/F) and

generated Wfs1 mPFC.KO mice (Figure 4A). Control littermates (wt) were injected with an AAV2

expressing only EGFP, AAV2.CMV.PI.EGFP.WPRE.bGH.
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Two sets of studies were conducted to demonstrate the local action of AAV2.CMV.HI.GFP-Cre.

SV40 in vivo. First, the mPFC of Wfs1 F/F mice was unilaterally injected with the virus. As shown in

Figure 4B, Wfs1 (red) continues to be expressed in the side of mPFC that has not received the virus,

whereas Wfs1 expression is efficiently deleted on the side of the mPFC that was injected with AAV2.

CMV.HI.GFP-Cre.SV40. Second, mice that were bilaterally injected with the Cre-expressing and

control viruses were sacrificed and examined following their use for the behavioral studies. Although

the use of intersectional viral approaches must necessarily result in some differences in the precise

number and exact locations of the infected cells, examination of data from many animals indicated

that there is no loss of Wfs1 expression in cortices injected with the control virus (Figure 4C), whereas

loss of Wfs1 in response to injection of the Cre-expressing virus was regional and reproducible

(Figure 4D). Comparative analyses of these animals, therefore, can be used to determine whether

Wfs1 is required specifically in the mPFC to moderate stress-induced depressive behaviors.

Figure 4. Deletion of Wfs1 in the medial PFC is sufficient to cause stress-induced depression-related behavior. (A) AAV2 expressing Cre recombinase

tagged at the N-terminus with GFP (AAV2.CMV.HI.GFP-Cre.SV40) or control AAV2 expressing EGFP (AAV2.CMV.PI.EGFP.WPRE.bGH) was injected

bilaterally in the medial PFC of Wfs1 F/F mice at P42 and allowed to express for 15 days. A subset of mice from both injected groups was subjected to

30 min ARS and 5 min short recovery followed by relevant behavioral assays. (B) Stereotaxic unilateral injection of AAV2.CMV.HI.GFP-Cre.SV40 in medial

PFC demonstrates extremely high efficiency of the viral knockout strategy in deleting Wfs1 around site of injection. Compared with control vector injected

mice which did not affect WFS expression, bilateral injection of AAV2.CMV.HI.GFP-Cre.SV40 results in loss of WFS1 in medial PFC (Wfs1/mPFC.KO) (C and

D). (E) Under baseline conditions, Wfs1/mPFC.KO mice do not exhibit depression-related behaviors but following ARS, Wfs1/mPFC.KO mice exhibit

a strong increase in episodes of immobility in Forced Swim Test (FST) (Two-way ANOVA—Bonferroni post hoc test: mPFC.KO Basal vs mPFC.KO + ARS, p

< 0.01**, N = 8 per group). Wfs1/mPFC.KO mice also exhibit anhedonia following ARS in the sucrose preference test (SPT) (Two-way ANOVA—Bonferroni

post hoc test: C + ARS vs mPFC.KO + ARS, p < 0.01**, N = 7 per group) (F). Wfs1/mPFC.KO mice have normal levels of spontaneous activity in the open

field arena (G) and do not exhibit anxiety-related behavior in elevated plus maze as measured by percentage open arm entries (H).

DOI: 10.7554/eLife.08752.009
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Accordingly, to investigate whether loss of Wfs1 in the mPFC of Wfs1 mPFC.KO mice altered

behavior in response to stress, a battery of behavioral tests was employed. As expected, there were no

differences between control and Wfs1 mPFC.KO mice in any of the measured behaviors, including the

behavioral despair and anhedonia assays, under normal baseline conditions (Figure 4E). However,

exposure of Wfs1 mPFC.KO mice to ARS resulted specifically in enhanced responses to stress, including

increased immobility in the FST (Figure 4E; Two-way ANOVA—Bonferroni post hoc test: mPFC.KO

Basal vs mPFC.KO + ARS, p < 0.01**, N = 8 per group) and suppressed preference for sucrose

(Figure 4F; Two-way ANOVA—Bonferroni post hoc test: C + ARS vs mPFC.KO + ARS: p < 0.01**, N = 7

per group). Spontaneous locomotion (Figure 4G) and anxiety-related behavior (Figure 4H) are not

aberrant in the Wfs1 mPFC.KO mice after exposure to ARS. These data are consistent with those

obtained from forebrain deletion of Wfs1 in the Wfs1/CKO animals (Figure 3C,D) and extend those

observations to allow the conclusion that Wfs1 function is required in the mPFC for layer 2/3 pyramidal

cells to respond normally to stress. The observation that depressive behaviors are enhanced specifically

in these mice strongly suggests that layer 2/3 pyramidal cells may be an important nexus for exploration

of molecular mechanisms that contribute to the comorbidity of stress and depression in human

populations.

Wfs1/CKO mice display increased physiological responses to stress
Previous studies have demonstrated that both patients with Wolfram syndrome and Wfs1 knockout

mice display altered stress responses (Sequeira et al., 2003), including elevated levels of serum

corticosterone upon exposure to stress (Kato et al., 2008; Luuk et al., 2009). SinceWfs1 is expressed

in many brain regions and in the periphery, we next sought to determine whether Wfs1 expression in

the forebrain contributes to the activation of the HPA axis and to the elevated corticosterone typical

of animals that suffer from systemic loss of Wfs1. To explore this possibility, we examined the

activation of HPA axis in wt and Wfs1/CKO mice after the application of ARS by cFOS

immunostaining. As shown in Figure 5, ARS resulted in significantly higher levels of cFos activation

in the hypothalamic PVN of Wfs1/CKO mice compared with controls (Figure 5A,B) (Two-way

Figure 5. Wfs1/CKO mice display hyperactivation of the hypothalamic–pituitary–adrenal (HPA) axis in response to

stress. Acute exposure to restraint stress significantly elevates cFos activation in the hypothalamic paraventricular

nucleus in both groups of animals compared to basal conditions, but ARS also leads to a significantly higher increase

of cFOS immunostaining in the PVN of Wfs1/CKO mice compared with controls (A and B) (Two-way

ANOVA—Bonferroni post hoc test: WT + ARS vs CKO + ARS, p < 0.001***, N = 3 per group). Further downstream in

the HPA axis, Wfs1/CKO mice release a significantly higher level of serum corticosterone (p < 0.001***) compared

with controls (C) up on exposure to ARS (Two-way ANOVA—Bonferroni post hoc test: WT + ARS vs CKO + ARS,

p < 0.001***, N = 5 per group). The intra-assay and inter-assay variability for the RIA were 5.08% CV and 1.99% CV,

respectively. Our data support a model in which loss of Wfs1 in forebrain neurons causes hyperactivation of the PVN

and the HPA axis is response to stress (D).

DOI: 10.7554/eLife.08752.010
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ANOVA—Bonferroni post hoc test: WT + ARS vs CKO + ARS, p < 0.001***, N = 3 per group). Since the

activation of the PVN is known to stimulate the pituitary gland to produce adrenocorticotropic hormone,

which in turn induces corticosterone release from adrenal glands, we examined endocrine responses to

stress in Wfs1/CKO mice using radioimmunoassay (RIA). We measured serum levels of corticosterone in

Wfs1/CKO and control mice under basal conditions and after 30 min of ARS (Figure 5C). These

experiments revealed that baseline corticosterone levels were not different in wt andWfs1/CKOmice (WT:

46.17 ± 5.00; CKO: 55.26 ± 10.18) and that in both wt and Wfs1/CKO serum corticosterone levels

increased in response to stress. However, the magnitude of the increase of serum corticosterone observed

in Wfs1/CKO in response to stress (CKO + ARS: 505.12 ± 7.63) was significantly greater than that seen in

their wt littermates (WT + ARS: 401.50 ± 6.00) (Two-way ANOVA—Bonferroni post hoc test: WT + ARS vs

CKO + ARS, p < 0.001***, N = 5 per group). The intra-assay and inter-assay variability for the RIA were

5.08% coefficient of variation (CV) and 1.99% CV, respectively. We conclude, therefore, that loss ofWfs1 in

forebrain neurons causes hyperactivation of the PVN and the HPA axis in response to stress (Figure 5D).

Taken together with the enhanced behavioral responses of Wfs1/CKO and Wfs1 mPFC.KO mice to ARS,

these results demonstrate that normal responses to stressful stimuli require the function ofWfs1 in layer 2/3

pyramidal cells in the mPFC (Figure 5D). Given the identification ofWfs1 as a genetic cause of MDD (Flint

and Kendler, 2014) and previous studies demonstrating that behavioral resilience requires normal function

of the mPFC (Russo et al., 2012), our data provide strong evidence that dysfunction in Wfs1-expressing

pyramidal cells in the mPFC may contribute to MDD as a result of enhanced susceptibility to stress.

Connectivity of Wfs1-expressing pyramidal cells in the mPFC
To gain additional insight into stress-induced depressive behaviors, it is important to identify

additional features of the circuitry that underlie this behavior. As an initial effort to map specific circuit

elements, we have used two approaches to discover brain areas and cell types that connect to Wfs1-

expressing pyramidal cells in the mPFC (Figure 6A). First, we have employed a cre-dependent AAV

reporter virus (AAV2.EF1a.DIO.eYFP.WPRE.hGH) to map projections originating in Wfs1 pyramidal

neurons expressing CreERT2 (Wfs1::CreERT2) in the mPFC. Injection ofAAV2.EF1a.DIO.eYFP.WPRE.

hGH into the mPFC of Wfs1::CreERT2 mice fed a tamoxifen diet results in recombination of the viral

genome only in Wfs1 pyramidal cells, thus allowing identification of target sites receiving projections

from these neurons. As shown in Figure 6,Wfs1-expressing neurons in the mPFC project locally within

the mPFC, and across the corpus callosum to the contralateral primary motor cortex. These neurons

also project subcortically through the pyramidal tract to terminate in the caudate putamen

(Figure 6B). Second, we have used the two-virus monosynaptic circuit tracing approach (Wall

et al., 2010) to identify cells that make direct, monosynaptic projections to Wfs1::CreERT2 cells in the

mPFC. A helper virus expressing Cre-dependent eGFP and an avian receptor protein, TVA (AAV9-

pEF1a-FLEX-GT), was injected into mPFC of Wfs1:CreERT2 mice, and allowed to express for 6 weeks,

followed by the injection of glycoprotein deleted rabies virus expressing mCherry [(EnvA)SAD-dG-

mCherry] that allows specific retrograde labeling of neurons making direct monosynaptic connections

to the Wfs1 cells in mPFC. As shown in Figure 6C, our results demonstrate that Wfs1 pyramidal cells

receive afferent information from pyramidal cells spanning several layers and regions of the cerebral

cortex and that projection neurons in the posterior thalamic nuclear group (Po) and the lateral

amygdala synapse onto Wfs1-expressing cells in the mPFC.

Wfs1 is required for normal ER function in the prefrontal cortex
One of the hallmark features of Wolfram syndrome is the presence of insulin-dependent diabetes.

Studies of WFS1 localization and function in the pancreas have demonstrated that WFS1 is present in

the ER, and thus it participates in a regulatory pathway that negatively regulates ER stress signaling

(Fonseca et al., 2010; Oslowski and Urano, 2011). In the absence of Wfs1, pancreatic β cells are

unable to adjust to changing glucose levels, resulting in altered β-cell function, apoptosis, and

pancreatic degeneration (Ishihara et al., 2004). Given the present demonstration that WFS1 is also

localized in the ER of layer 2/3 pyramidal cells in the mPFC (Figure 2) and that Wfs1 deletion from

these neurons leads to abnormal behavioral responses to stress and hyperactivation of the HPA axis

(Figures 3–5), we were interested in assessing functions of PFC neurons that might be altered in

response to loss of Wfs1. We chose to focus on neuropeptide and growth factor processing because

of the role of WFS1 in insulin processing and secretion and because layer 2/3 pyramidal cells express

a variety of peptides that have been implicated in stress and depression.
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TRAP translational profiling of Ntf3 cortical cells (Figure 1G) demonstrated significant

enrichment of the mRNAs for several secreted proteins that are of interest because of their known

roles in neuronal function, including wingless-related MMTV integration site 7a (WNT7A) and

neurotrophin 3 (NTF3). To determine whether their processing and/or abundance changed as

a consequence of loss of Wfs1 in the PFC, Western blots for each of these proteins were

processed using brain extracts collected from wt and Wfs1/CKO mice under baseline conditions

and following ARS. As a comparison, we assessed the abundance of brain-derived neurotrophic

factor (BDNF) which is present in the PFC but not specifically enriched in the Ntf3/Wfs1-

expressing cells. As shown in Figure 7, no differences were evident in any of these proteins from

wt or Wfs1/CKO animals under baseline conditions. However, in response to ARS, the abundance

of WNT7A and NTF3 were both altered. WNT7A is a secreted signaling factor that is involved in

axonal remodeling and synaptic differentiation (Ciani et al., 2011). In Wfs1/CKO animals, it is

specifically decreased in the PFC (Two-way ANOVA—Bonferroni post hoc test: CKO Basal vs CKO

+ ARS, p < 0.001**, N = 3 per group) (Figure 7A). Mature NTF3 (∼14 kDa) is processed from

a ∼32-kDa precursor that is referred to as proNTF3 (Yano et al., 2009). Although we could not

reliably detect mature NTF3 on Western blots from PFC, increased levels of proNTF3 were

Figure 6. Connectivity of Wfs1-expressing pyramidal cells in the medial PFC. (A) Two different viral tracer

strategies were applied to identify projections originating in mPFC Wfs1 pyramidal neurons (output) and

monosynaptically connected presynaptic partners (input). (B) Cre-dependent AAV reporter virus (AAV2.EF1a.DIO.

eYFP.WPRE.hGH) was injected in the mPFC of Wfs1::CreERT2 mice to map projections of Wfs1 pyramidal neurons

expressing CreERT2 to the contralateral motor cortex (M1, M2) and caudate putamen (CPu). (C) Two-virus

monosynaptic circuit tracing approach was used to identify direct presynaptic partners of Wfs1-expressing cells in

the mPFC. A helper virus expressing Cre-dependent eGFP and TVA (AAV9-pEF1a-FLEX-GT) was injected into

mPFC of Wfs1:CreERT2 mice and allowed to express for 6 weeks, followed by injection of glycoprotein deleted

rabies virus expressing mCherry [(EnvA)SAD-dG-mCherry] that allows specific retrograde labeling of neurons

making direct monosynaptic connections to the Wfs1 cells in mPFC. This strategy reveals that Wfs1 pyramidal

neurons receive direct presynaptic input from neuronal populations in cortical areas including primary

somatosensory cortex (S1 Ctx), auditory cortex (Aud Ctx), retrospenial granular cortex (RSG Ctx), posterior

thalamic nuclear group (Po), and lateral amygdala (LA).

DOI: 10.7554/eLife.08752.011
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consistently observed in Wfs1 knockout animals in response to ARS (Two-way ANOV-

A—Bonferroni post hoc test: CKO Basal vs CKO + ARS, p < 0.0001***, N = 3 per group)

(Figure 7B). These changes were not observed in hippocampal neurons extracts processed from

the same animals (Figure 7D,E). No changes in BDNF were evident in Western blots prepared

from either the PFC or hippocampus (HPC) in response to loss of Wfs1 (Figure 7C,F). These data

demonstrate that processing and release of growth factors, neurotrophins and perhaps other

secreted proteins are disturbed in layer 2/3 neurons harboring Wfs1 deletion. This is consistent

with the localization of WFS1 to the ER of these cells (Figure 2) and with previous studies of WFS1

function in pancreatic β cells.

Figure 7. Wfs1 is required for normal endoplasmic reticulum function in the prefrontal cortex. Abundance of secreted polypeptides specifically enriched

in the layer 2/3 pyramidal neurons is altered in the prefrontal cortex of Wfs1/CKO mice following ARS. (A) In the PFC lysates, WNT7a is significantly

reduced in the Wfs1/CKO mice exposed to ARS (Two-way ANOVA—Bonferroni post hoc test: CKO Basal vs CKO + ARS, p < 0.001**, N = 3 per group).

(B) proNTF3, the 23 kDa precursor of NTF3, is strongly elevated in Wfs1/CKO mice exposed to ARS indicating dysregulated precursor processing (Two-

way ANOVA—Bonferroni post hoc test—CKO Basal vs CKO + ARS, p < 0.0001***, N = 3 per group). (C) BDNF, whose expression is not restricted to the

layer 2/3 pyramidal cells in the prefrontal cortex, is not significantly altered. Abundance of the same polypeptides, WNT7a, proNTF3 and BDNF are not

altered in the hippocampus (HPC) lysates regardless of the genotype and exposure to stress (D, E, F).

DOI: 10.7554/eLife.08752.012
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Discussion
MDD is a behaviorally and genetically complex disorder that that is thought to arise from dysfunction

in a distributed circuit involving the mPFC, the anterior cingulate cortex, the striatum, the thalamus,

and other brain areas (Russo et al., 2012). Although the cell types and circuit elements that underlie

different aspects of depressive behaviors and the actions of antidepressant therapies are beginning to

be identified, the impact of environmental stress on depression circuitry has not been investigated

thoroughly. Here, we report thatWfs1, a gene that can cause depression (Flint and Kendler, 2014), is

co-expressed with Ntf3, Penk, and Wnt7a in supragranular 2/3 pyramidal neurons in the mPFC. We

demonstrate that conditional deletion of Wfs1 from the forebrain in general, or from the mPFC

specifically, results in the induction of depressive behaviors in response to acute stress. This is

accompanied by hyperactivation of the HPA axis and elevation of serum corticosterone. We show that

Wolframin (the protein encoded by Wfs1) is localized to the ER in these neurons and that its loss

results in altered growth and trophic factor processing/secretion. Finally, we employ viral tracing

methodology to determine that Wfs1-expressing cells in the mPFC project within the cortex and to

the caudate putamen and that they receive afferent information from other cortical areas, from the

amygdala and from the posterior nuclear thalamic group. We conclude that layer 2/3 pyramidal cells

in the mPFC are a crucial node in the circuitry regulating depressive behaviors in response to stress

and that identification of mechanisms that regulate the activity of these neurons, and their

downstream targets can provide important insights into the relationship between stress and

depression.

Wfs1 and the brain
Patients with Wolfram syndrome suffer from a broad spectrum of psychiatric and neurological

problems, including suicidal tendencies. Heterozygous carriers of mutant Wfs1 alleles are also

affected, exhibiting clinical features of pure MDD. It has been estimated that as many as 7% of the

patients hospitalized for MDD may be predisposed due to Wfs1 mutations (Swift et al., 1990;

Crawford et al., 2002; Swift and Swift, 2005). Studies of Wfs1 knockout mice have shown that they

replicate central and peripheral features of Wolfram syndrome and that they display impaired

behavioral adaptation to stress (Sequeira et al., 2003; Kato et al., 2008; Luuk et al., 2009).

Interpretation of these data with regard to brain circuitry is confounded by the complexity of the

phenotypes present in Wfs1 knockout animals and by the expression of Wfs1 in specific subsets of

neurons in the cerebral cortex, the hippocampus, the nucleus accumbens (NAc), the thalamus, the

amygdala, and the brainstem. Our demonstration that Wfs1 is required for normal ER function in layer

2/3 pyramidal cells in the mPFC and that these cells moderate depressive behaviors in response to

stress, raises two issues regarding Wfs1. First, given previous studies documenting an essential

function for Wfs1 in pancreatic β cells (Ishihara et al., 2004; Fonseca et al., 2005) and the retina

(Bonnet Wersinger et al., 2014), and detailed biochemical studies demonstrating that WFS1

negatively regulates ER stress signaling through ATF6α (Fonseca et al., 2010), it seems probable that

cell types expressing Wfs1 in the brain also require its function to regulate ER stress. In the case of

pancreatic β cells, it is thought that WFS1 tightly controls ER stress to regulate insulin production in

response to frequent fluctuations of blood glucose. Given these examples, the expression of Wfs1 in

selected cell types may reflect a requirement for WFS1 in regulating ER function, perhaps even

secretory function, in response to extracellular signals that modulate the activity of these cell types. In

this context, the observations that WNT7A and proNTF3 protein levels are altered in the cortex of

Wfs1/CKO animals in response to stress may be important. Clear positive roles for WNT7A in synapse

formation and maintenance have been documented in several systems (Hall et al., 2000; Gogolla

et al., 2009). In contrast to NTF3, which has an important trophic role in synapse formation, proNTF3

can induce apoptosis in cultured cells, suggesting a negative role for proNTF3 in neurons (Yano et al.,

2009). While it is notable that both decreased WNT7A and increased proNTF3 could result in loss of

synaptic trophic support in response to stress, this is only one of many possible pathways that could

be negatively impacted in layer 2/3 neurons as a consequence of Wfs1 deletion.

If neurons expressing Wfs1 in the brain require its function to respond to and moderate behavior in

response to specific signals, one might ask which signals carry this information to Wfs1-positive

neurons in the context of stress. We find that receptors for three circulating factors that are important

for stress responsivity are expressed in Wfs1-positive cells in the cortex: Nr3c1, the glucocorticoid
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receptor; Esr1, the estrogen receptor; and several adrenergic receptors, Adra2c, Adr2a and Adrb1. It

will be of interest, therefore, to determine in future studies whether loss of Wfs1 regulates the

expression or function of these receptors in layer 2/3 pyramidal cells. This avenue of investigation

could lead to an improved understanding of signals that are particularly relevant to the regulation of

depressive behaviors by the mPFC.

mPFC circuitry and the regulation of stress responses
We demonstrate here that conditional deletion of Wfs1 from the forebrain in general, or from the

mPFC specifically, results in enhanced sensitivity to ARS. The data demonstrate that the PVN is

hyperactivated in response to stress in these animals, and that this leads to elevated peripheral

corticosterone, is interesting with regard to the connectivity of Wfs1-expressing neurons in the

mPFC. As illustrated in Figure 6, Wfs1-expressing cells in the mPFC receive input from several

adjacent cortical regions, from the BLA and from the thalamus. Taken together with the

expression of the glucocorticoid, estrogen, and adrenergic receptors discussed above, these

pathways provide ample opportunity for modulation of Wfs1 cells in the context of stress. Thus

far, our data have demonstrated projections from Wfs1-expressing cells primarily to neighboring

and contralateral cortical structures, and to the caudate putamen. Given the central role that

striatal circuits play in both stress and depression, the simplest interpretation of our results is that

loss of Wfs1 in mPFC impairs signaling to the striatum, and that failure to stimulate GABAergic

output from the NAc to the PVN (Russo et al., 2012) is responsible for hyperactivation of the HPA

axis in this model of stress-induced depression. Alternatively, projections from the mPFC to other

subcortical sites (e.g., the amygdala) might be altered in response to Wfs1 loss in layer 2/3

neurons. It will be of interest, for example, to determine whether the activity of S100a10

corticostriatal neurons that express p11 is altered in these animals in altered in response to local

circuit disruptions as a result of loss of Wfs1 (Svenningsen et al. 2006; Schmidt et al., 2012).

Additional studies will be required to understand fully the properties of the mPFC circuits that are

engaged by Wfs1-expressing pyramidal cells.

Stress-induced depression
Two major clinically relevant findings stimulated us to conduct these studies: the identification of

Wfs1 as a gene that can be causative for MDD (Flint and Kendler, 2014); and the dynamic

structural alterations to dendritic arbors of superficial layer pyramidal cells that have been

documented in human postmortem and animal studies in response to stress (Rajkowska et al.,

1999; Radley et al., 2004). The data we have presented here demonstrate layer 2/3 pyramidal

neurons in the mPFC that have been compromised or sensitized by removal of Wfs1 exacerbate

depressive behaviors in response to ARS. One interpretation of these data that is consistent with

known findings is that normal function of these cells is required to moderate stress and suppress

depressive behaviors. Although genetic studies indicating an association between MDD and

bipolar disorder and Wfs1 have not been consistently confirmed (Ohtsuki et al., 2000; Koido

et al., 2005), investigation of Wfs1 carriers and family members has provided strong evidence

that Wfs1 mutations can lead to an increased incidence of psychiatric admissions for

hospitalization (Swift et al., 1991). Given the important contributions that family studies have

made to our understanding of disease (Pohodich and Zoghbi, 2015), we believe that further

investigation of layer 2/3 cells in other models of depression, and in response to a variety of

stressors, can shed important new light on pathways that operate in these cells to moderate

depressive behaviors in response to stressful environments.

Materials and methods

Animals
All animal protocols were carried out in accordance with the US National Institutes of Health Guide for

the Care and Use of Laboratory Animals and were approved by the Rockefeller University Institutional

Animal Care and Use Committee. All mice were raised at 78˚F in 12-hr light:12-hr dark conditions with

food and water provided ad libitum except when noted, for experiments requiring food restriction.

The Ntf3 bacTRAP mice and Wfs1-mutant mice were generated and maintained at The Rockefeller
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University. The Ntf3 bacTRAP transgenic mice were generated by modifying a BAC clone containing

theNtf3 gene to insert an EGFP/L10a fusion protein into the translation start site, and the modified BAC

was used for transgenesis as described previously (Gong et al., 2003). Conditional Wfs1 KO (Wfs1/

CKO) mice were generated by breeding floxed Wfs1 mice with Emx1.IRES.Cre mice—(Stock 005628)

purchased from the Jackson Laboratory (Bar Harbor, ME). Wfs1:Cre ERT2 Tg2 mice (Stock 009614) were

also obtained from Jackson Laboratory and fed 400 mg/kg tamoxifen diet (Teklad lab diets, Harlan

Pharmaceuticals, Frederick, MD) from 2 weeks before surgery onwards to activate Cre recombinase.

Molecular cloning, BAC modification and transgenesis
The BAC modification and transgenesis were carried out as previously established (Gong et al.,

2003). Using CloneFinder, BAC RP23-79E22 incorporating 170 kB of genomic DNA at the minus

strand of Chr 6: 125,999,011–126,169,212 and containing Ntf3 gene and regulatory elements was

selected for modification. A 711 bp homology arm (‘A’ box) immediately upstream of Ntf3

translational start codon was PCR amplified using the forward primer (GGCGCGCCTAGACAGCTT

GAACTAACTGTG) and reverse primer (CTGCTGGGTAAGGAGAGGAGCCTT) and cloned into the

pS296 shuttle vector containing the EGFP/L10a transgene using the AscI and NotI restriction sites.

The S296 vector was electroporated into the DH10B bacteria containing the RP23-79E22 BAC and

pSV1.RecA plasmid and allowed to grow overnight before recombination was terminated by growth

at 43˚C. BAC co-integrates were screened for successful recombination by PCR and Southern blot

analysis of Hind III digested BAC DNA using radiolabeled ‘A’ box as a probe. The modified BAC was

then grown and prepared by double acetate purification with CsCl gradient centrifugation, followed

by membrane dialysis. The quality and concentration of purified BAC DNA was determined by pulsed

field gel electrophoresis. Modified BAC DNA was injected into the pronuclei of fertilized FVB/N

mouse oocytes at a concentration of 0.5 ng/μl. Five transgenic founder lines were generated.

Founders were crossed to C57Bl/6J wt mice and F1 progeny were screened for proper transgene

expression by EGFP immunohistochemistry.

Generation of rabbit polyclonal antibody to WFS1
Rabbit polyclonal antibody was generated against a custom synthesized peptide (CEPPRAPRPQAD-

PSAG) of WFS1 (Green Mountain Antibodies, Burlington, VT). The antigen was purified to 90% by

HPLC and coupled to a carrier before being injected to rabbits. The antibody titer from the rabbit

blood was measured and effective concentration of the antibody for immunohistochemistry was

determined empirically.

Immunohistochemistry
Brains were processed identically with MultiBrain Technology (NSA, NeuroScience Associates,

Knoxville, TN) for DAB immunohistochemistry with a 1:75,000 dilution of Goat anti-EGFP serum

(Heiman et al., 2008) according to the Vectastain elite protocol (Vector Labs, Burlingame, CA). Serial

sections were digitized with a Zeiss Axiosko2 microscope at 10× magnification. For immunofluores-

cent staining, mice were deeply anesthetized using CO2 chamber and transcardially perfused with 10

ml of phosphate-buffered saline (PBS) followed by 30 ml of 4% paraformaldehyde (PFA) in PBS. Brains

were post-fixed in 4% PFA for 1 hr and cryoprotected by sequential sinking in 5% wt/vol sucrose in

PBS at 4˚C for 24 hr with gentle agitation followed by 30% wt/vol sucrose in PBS for the next 24 hr. 40-

μm coronal sections were cut with Leica SM200R freezing microtome. Sections were blocked in 5%

Normal Donkey Serum in PBS/0.1% Triton X-100 for 30 min and incubated overnight at 4˚C with

primary antibody against chicken anti-EGFP (Abcam, Cambridge, MA; 1:500), rabbit anti-WFS1

(Green Mountain Antibodies; 1:1000), mouse anti-NeuN (Millipore, Billerica, MA; 1:500), or anti-cFOS

(Santa Cruz, Dallas, TX; 1:1000) in the blocking buffer. Appropriate Alexa dye-conjugated secondary

antibodies were used at 1:400 dilution in the blocking buffer. Sections were mounted on the

SuperFrost slides (VWR, South Plainfield, NJ) using Fluorogel media containing DAPI for nuclear

counterstain (EMS, Hatfield, PA). All sections were imaged on Zeiss LSM-700 confocal microscope.

Generation of Wfs1 conditional null allele
The Wfs1-mutant mice were generated at Lexicon Pharmaceuticals, Inc (The Woodlands, TX). The

conditional targeting vector was derived using the Lambda KOS system. The Lambda KOS phage
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library, arrayed into 96 superpools, was screened by PCR using exon 8-specific primers Wfs2

[5′-GTGAAGTACCCTTTACACGC-3′] and Wfs3 [5′-GCAGCAGGTCGGTGAGAG-3′]. The PCR-positive

phage superpools were plated and screened by filter hybridization using the 280-bp amplicon derived

from primers Wfs2 and Wfs3 as a probe. Three pKOS genomic clones, pKOS-12, pKOS-39, and pKOS-

58 were isolated from the library screen and confirmed by sequence and restriction analysis. Gene-

specific arms (5′-GAGGCCCAGGAGTGGGAAAGTCTAGGGTGTG-3′) and (5′-GACAAGGCTCCCTG

TAATCAAACCAGAAGG-3′) were appended by PCR to a yeast selection cassette containing the URA3

marker. The yeast selection cassette and pKOS-12 were co-transformed into yeast, and clones that had

undergone homologous recombination to replace a 2706 bp region containing exon 8 with the yeast

selection cassette were isolated. This 2706 bp fragment was independently amplified by PCR and

cloned into the intermediate vector pLFNeo introducing flanking loxP sites and a Neo selection

cassette (Wfs1–pLFNeo). The yeast cassette was subsequently replaced with the Wfs1–pLFNeo

selection cassette to complete the conditional Wfs1-targeting vector that has exon 8 flanked by

loxP sites. The NotI-linearized targeting vector was electroporated into 129/SvEvBrd (Lex-1) ES cells.

G418/FIAU-resistant ES cell clones were isolated, and correctly targeted clones were identified and

confirmed by Southern analysis using a 485-bp 5′ external probe (9/50), generated by PCR using

primers Wfs9 [5′-CTGCCTTGCTTGCAATGTTG-3′] and Wfs50 [5′-CATGTCCAAGACAGGATGTG-3′],
and a 443-bp 3′ external probe (37/53), amplified by PCR using primers Wfs37 [5′-CAACATTT
CTCAGAGCTTCC-3′] and Wfs53 [5′-CGTGTTAGAGTGCTGTACAG-3′]. Southern analysis using

probe 9/50 detected a 12.1-kB wt band and 9.6-kB mutant band in Hind III digested genomic DNA

while probe 37/53 detected an 8.8-kB wt band and 10.8-kB mutant band in Bam HI digested genomic

DNA. Three targeted embryonic stem (ES) cell clones were microinjected into C57BL/6 (albino)

blastocysts. The resulting chimeras were mated to C57BL/6 (albino) females to generate mice that

were heterozygous for the Wfs1 conditional mutation (Wfs1 F/+).

Stereotaxic intracranial injections
All animals were anesthetized by intraperitoneal injection of a cocktail of ketamine (100 mg/ml) and

xylazine (1 mg/ml), at a volume equivalent to 10% of their body weight. The stereotaxic coordinates

for mPFC were determined using Paxinos/Franklin mouse atlas (Paxinos and Franklin, 2001). The

following stereotaxic measurements were taken relative to the bregma and with the depth

determined from the brain surface: anterior–posterior: +2.46, ML: ±0.75, DV: 1.75. For local Cre-

mediated deletion of Wfs1 in the PFC, 0.5 μl of AAV2.CMV.HI.GFP-Cre.SV40 or control reporter virus

AAV2.CMV.PI.EGFP.WPRE.bGH was injected bilaterally into the medial PFC. 15 days after injection of

AAV vectors, mice were subjected to behavior assays or euthanized, and their tissues harvested for

expression analysis.

For anterograde tracing, Wfs1::Cre ERT2 Tg2 mice were injected with 0.5 μl of Cre-dependent AAV
viral tracer, AAV2.EF1a.DIO.eYFP.WPRE.hGH, in mPFC to trace the projections of Wfs1-expressing

cells. For monosynaptic retrograde tracing, a helper virus expressing Cre-dependent eGFP and an

avian receptor protein, TVA (AAV9-pEF1a-FLEX-GT), was injected into mPFC of Wfs1:CreERT2 mice,

and allowed to express for 6 weeks, followed by injection of glycoprotein deleted rabies virus

expressing mCherry [(EnvA)SAD-dG-mCherry] that allowed specific retrograde labeling of neurons

making direct monosynaptic connections to the Wfs1 cells in mPFC.

Affinity purification of translating ribosomes
All polysome purifications and mRNA extractions were performed as described previously (Heiman

et al., 2008). Three adult mice, balanced for gender and 8–10 weeks old, were pooled for each

sample, and three biological replicates were collected for each bacTRAP line. Briefly, cortices were

rapidly dissected in ice-cold HBSS containing 2.5 mM HEPES-KOH (pH 7.4), 35 mM glucose, 4 mM

NaHCO3, and 100 μg/ml cycloheximide, homogenized in extraction buffer 10 mM HEPES-KOH

(pH 7.4), 150 mM KCl, 5 mMMgCl2, 0.5 mM DTT, 100 μg/ml cycloheximide, RNAs in RNAse inhibitors

(Promega, Madison, WI) and complete-EDTA-free protease inhibitors (Roche, Madison, WI), and

centrifuged at 2000×g for 10 min. The supernatant from the homogenate was supplemented with

a mix of detergents DHPC (Avanti Polar Lipids, Alabaster, AL) and NP-40 (Sigma–Aldrich, St Louis,

MO), and cleared by a second centrifugation at 20,000×g for 15 min. Polysomes were

immunoprecipitated with 100 μg of monoclonal anti-EGFP 19C8 and 19F7 antibodies bound to
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Protein-L conjugated Streptavidin MyOne Dynabeads overnight at 4˚C and washed with high salt

buffer containing 10 mM HEPES-KOH (pH 7.4), 350 mM KCl, 5 mM MgCl2, 1% NP-40, 0.5 mM DTT,

100 μg/ml cycloheximide, and RNAs in RNAse inhibitors (Life Technologies, Grand Island, NY). Bound

RNA was extracted and purified using Absolutely NanoPrep RNA purification kit (Stratagene, La Jolla,

CA). RNA quantity was measured using Nanodrop 1000 spectrophotometer (Wilmington, DE) and

quality determined with Agilent 2100 Bioanalyzer. RNA from 50 μl of homogenate prior to

immunoprecipitation was also purified as Cortex input samples.

Specificity index analysis of translational profiles
15 ng of total RNA was amplified with GeneChip Expression 3′ Amplification 2-cycle cDNA Synthesis

kit (Affymetrix, Santa Clara, CA) and hybridized to GeneChip Mouse Genome 430 2.0 microarrays

(Affymetrix) according to the manufacturer’s instructions. CEL files for all RNA samples were imported

into GeneSpring GX 12.6 (Agilent, Santa Clara, CA) and preprocessed with the GCRMA algorithm.

For each experiment, three biological replicates of IP were averaged and compared with the Cortex

Input using an X–Y scatter plot for all 40,101 probe sets. Thresholds were set at 40th percentile for

expression and for Top 150 probe sets that had the highest fold change difference in the target cell

type compared with the Whole Cortex input.

For specificity index analysis of multiple distinct cell types, microarray data were preprocessed

using Bioconductor package affy (Gautier et al., 2004) and normalized using Robust Multichip

Average (Irizarry et al., 2003). Differentially expressed genes among the different cell types were

identified by using Bioconductor package limma (Smyth, 2005). p-values were corrected to control

the false discovery rate of multiple testing according to the Benjamini–Hochberg procedure

(Benjamini and Hochberg, 1995) at 0.05 threshold. Significant genes with fold change (|fold change|
≥ 1) were considered top genes. Cell-specific gene expression analysis was performed by using the

specificity index statistic (pSI) R-package version 1.1 (Dougherty et al., 2010). The pSI allows

identification of groups of genes enriched in certain cell type compared with other cell types.

Quantitative real-time RT-PCR
cDNA was synthesized from 15 ng of total RNA from three IP replicates and Whole cortex input using

WT-Ovation RNA Amplification kit (NuGEN Technologies, San Carlos, CA) and then purified with the

Qiagen Quick PCR cleanup, according to the manufacturer’s instructions (Qiagen, Valencia, CA). PCR

was carried out in Applied Biosystems (Carlsbad, CA) StepOnePlus RT-PCR System using Taqman

probes for Ntf3 (Mm00435413_s1), Wfs1 (Mm00495979_m1), Penk (Mm01212875_m1), and Gapdh

(Mm99999915_g1) (Applied Biosystems) and PerfeCTa qPCR Fastmix II ROX (Quanta Biosciences,

Gaithersburg, MD) following standard cycling conditions (50˚C for 2 min, 95˚C for 10 min, 40 cycles of

95˚C for 15 s and 60˚C for 1 min). Products that did not yield a product in at least 2 replicates prior to

35 cycles were excluded from further analysis. All data were normalized to Gapdh, and relative

expression changes between conditions were calculated with the ddCT method (Livak and

Schmittgen, 2001).

Western blot
Brain tissue pooled from 2 animals was quickly dissected in ice-cold PBS. Three biological replicates

were collected for each condition. The prefrontal cortex and hippocampus were separately

homogenized in 500 μl of lysis buffer containing 50 mM Tris HCl (pH 8.0), 20 mM EDTA, 2500 units

of Benzonase nuclease (Sigma–Aldrich) and complete-EDTA-free protease inhibitors (Roche). The

lysate was cleared by centrifugation at 2000×g and supplemented with triple detergents including

10% sodium deoxycholate, 10% NP-40, and 1% SDS by volume. Samples were centrifuged a second

time at maximum speed (20,000×g) for 15 min. The protein concentration of samples was determined

using the QuBit 2.0 protein quantitation kit (Invitrogen, Grand Island, NY).

30 μg of protein was denatured and loaded in each well of 4–12% NuPAGE Bis-Tris reducing gels

(Life Technologies). The gels were run at 100 V and subjected to wet transfer. PVDF membranes were

first activated with methanol and equilibrated in transfer buffer containing 1× transfer buffer (Life

Technologies) and 20% methanol. The bands were transferred overnight from gels to PVDF

membranes using chilled transfer buffer at 4˚C. Membranes were blocked in Odyssey blocking buffer

(LI-COR, Lincoln, NE) for 30 min to prevent non-specific background binding. Following primary
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antibodies were diluted in OBT buffer containing Odyssey blocking buffer and 0.1% Tween-20: rabbit

anti-NTF3 (Abcam; 1:100), rabbit anti-BDNF (Santa Cruz; 1:100), rabbit anti-PENK (Abcam; 1:100),

and rabbit anti-β ACTIN (Abgent, San Diego, CA; 1:2000).

Membranes were blotted with primary antibody overnight at 4˚C and washed three times with

PBST buffer containing 1× PBS and 0.1% Tween-20 for 10 min each wash. IR-dye-conjugated

secondary antibodies (LI-COR; 1:40,000) were diluted in OBT buffer and blotted on to membranes for

1 hr at room temperature followed by washes with the PBST buffer. Membranes were scanned using

the Odyssey CLx Infrared Imaging System (LI-COR) and bands were quantified using the Image Studio

Lite software (LI-COR).

Behavioral analysis
Locomotor and exploratory behaviors were recorded for each individual mouse for 60 min using

eight Digiscan open field (OF) apparatus and Fusion software (Accuscan Instruments, Inc.,

Columbus, OH). Mice were habituated to the testing room in their homecages for 30 min before

the start of the experiment. A large arena (50 cm × 50 cm × 22.5 cm) equipped with infrared

photocells at two different levels (20 and 50 mm above the floor) was used to record horizontal

locomotor activity (total distance), and thigmotaxis (time spent in the center vs total distance).

Two fluorescent lamps positioned on two sides of the room provided light levels of about 450 lux

in the OF arenas. Each animal was placed in the center of the OF, and its activity was measured for

60 min.

SPT was performed with a two-bottle procedure, during which mice had free access to both water

and sucrose solution. The fluids were provided in 50-ml falcon tubes containing stoppers fitted with

ball–point sipper tubes to prevent leakage. Group-housed animals were first habituated for 3

consecutive days to 1% sucrose solution. After habituation, mice were individually housed and water

deprived for 20 hr. On the test day, mice were presented with two-bottle choice conditions with either

2% sucrose (in drinking water) or drinking water alone. Consumption of water or sucrose solution was

measured by weighing the bottles before and after the test. Bottles were counterbalanced across the

left and the right sides of the cage. Sucrose preference was determined as the ratio of average

sucrose solution intake (in ml) to the average total fluid intake (in ml).

For Porsolt’s FST, mice were habituated to the testing room in their homecages for 30 min and

then individually placed in a glass cylinder (16 cm diameter, 25 cm height) filled with tap water

(23–25˚C) to a height of 20 cm. Test sessions lasted 6 min and were videotaped. The episodes of

immobility were scored every 5 s for the final 4 min of the test.

Elevated plus maze consisted of two opposite open arms without sidewalls and two enclosed

arms of the same size with 14-cm high sidewalls and an endwall. The arms extended from a common

central square (5 cm2 × 5 cm2) perpendicular to each other, making the shape of a plus sign. The

entire plus-maze apparatus was elevated to a height of 30 cm. Testing began by placing an animal

on the central platform of the maze facing the closed arm. An arm entry was counted only all the

four limbs were within a given arm. Standard 10-min test duration was applied and the maze was

wiped with 70% ethanol in between trials. Test sessions were video recorded with a camera in the

center of the maze while ensuring minimal shadows. EthoVision software was used to record the

time spent on open arms and closed arms, total distance moved, and number of open arm and

closed arm entries.

For appetite operant conditioning, mice were food restricted to 85–90% of their baseline body

weight. Mice were introduced with dust-free precision pellets (Bio-Serv, Flemington, NJ) in their

homecages to eliminate novelty associated with these pellets. Operant conditioning were carried

out in 12 identical chambers (Med Associates, St Albans City, VT) equipped with a food magazine,

house light, stimulus light, tone generator, and three nose-poke apertures. Mice were given 2 days

of magazine training with variable interval 20 for time of pellet dispensal until a total of 50

reinforcers were delivered. For acquisition of instrumental learning, one of the three illuminated

nose-poke apertures was designated as active (left, center, or right) in a pseudo-randomized and

balanced manner for each genotype. A response in the active aperture (correct response) resulted

in delivery of a food pellet, accompanied by a 3-s presentation of stimulus light above the magazine

and tone. A response in the other two apertures (incorrect response) had no effect. The food

reinforcers were all delivered on a variable ratio-2 schedule (1, 2 or 3 correct responses were
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required to obtain reinforcement). Mice were tested for 25 min each day over 12 consecutive days

of training (Acquisition), and the number of correct and incorrect responses were recorded. On the

13th day, the far right or far left aperture that was previously unreinforced was now designated to

be the active aperture. Reversal learning and thus behavioral flexibility was measured over the

course of next 4 consecutive days.

Morris water maze testing took place in a white circular Persplex pool, 97 cm in diameter,

surrounded by proximal and distal extramaze cues. The pool was filled with opaque water maintained

at 23.5˚C. Mice were shaped in the tank 1 day prior to testing using a four trial procedure in which

a smaller ring (55 cm) was placed inside of the larger (97 cm) ring to decrease the total swimming area.

Mice were first placed on a visible 10 × 10 cm platform for 10 s and then removed. They were then

placed at three distances progressively further from the platform and allowed to swim to the platform.

No data were collected during shaping. From the second day onwards, a transparent lucite platform

was submerged just underneath the surface of water and placed in the same location for all trials. 6

trials were conducted per day for 4 consecutive days. Each mouse was placed in one of the four start

positions, which varied for each trial, and given 120 s to find the platform in each trial. If the mouse did

not find the platform within this time, then it was led to the platform where it was allowed to stay for

10 s. Each mouse was returned to its homecage during the inter-trial interval of approximately 20 min.

On the seventh day, task retention was assessed by removing the platform from the pool. Throughout

the trials, swim time, that is, latency to reach platform (in s), swim distance (in cm), and swim speed (in

cm/s) were recorded. All data for Morris water maze were collected using EthoVision XT (Noldus,

Leesburg, VA).

Corticosterone RIA
Submandibular blood of five wt and five Wfs1/CKO mice were collected in EDTA-coated tubes (Fisher

Scientific, Pittsburgh, PA), centrifuged at 12,000×g for 5 min, and plasma was extracted. RIA was

carried out on the plasma following the manufacturer’s protocols (MP Biomedicals, Solon, OH).

Residual I-125 activity was measured using a Gamma counter.

Quantification of cFOS-labeled cells
Light microscopy and simple cell counting methods were used to measure cFos immunoreactivity in

brain sections. The number of dots representing cFos protein in immunostained brain sections was

counted for every 40 μm through the whole area of PVN using the Cell Count plugin of the ImageJ

software. Immunopositive cFos cells from brain sections of three animals were counted and averaged,

and standard error of mean was calculated.

Statistics
Prism 6 software (GraphPad, La Jolla, CA) was used for statistical analysis of behavioral,

histological, and biochemical data. Values are represented as mean ± standard error of mean. The

cutoff set for significance for all experiments was α <0.05. For data involving two or more

independent variables, two-way ANOVA was used, and Bonferroni post hoc tests, correcting for

multiple comparisons, were used. Repeated measures one-way ANOVA was used for behavior

assays involving multiday training of same mice such as in Morris water maze and appetite operant

conditioning paradigms. Unpaired Student’s t-test was used for quantitative RT-PCR data. pSI R-

package version 1.1 was used for specificity index analysis of translational profiles of multiple cell

types.
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